Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 357: 120760, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581891

RESUMO

It is of great significance to solve the environmental problems caused by the unreasonable treatment of coal gasification slag. This study successfully produced Si-Fe-Al-Ca alloy from low-carbon fine slag with petroleum coke as reducing agent in a plasma furnace with an alternating current magnetic field, which solved the problem of the high reactivity requirement of carbon reductant for plasma smelting. The optimum carbon content of the mixed low-carbon fine slag and petroleum coke is 105% of the theoretical value. As the strength of the alternating current magnetic field increased (from 0% to 100% of the maximum power), the yield of the alloy (from 25.46% to 58.19%) and the recovery ratios of each element (Si, Fe, Al, Ca, Ti) increased. In addition, as the magnetic field strength increased, the pores inside the alloy became smaller, the composition of the alloy became more homogeneous, and a better separation of the alloy from the slag was observed. The main composition of the alloy at the strongest alternating current magnetic field is Si: 51.14 wt%, Fe: 28.41 wt%, Al: 9.14 wt%, Ca: 7.15 wt%, Ti: 2.03 wt%. We attribute the enhanced smelting effect of the alternating current magnetic field to the resistive heat and Lorentz force produced by the induced current. In addition, the skin effect concentrated the induced current on the surface of the oxide particles and carbon particles, which increased the temperature of the reaction interface and promoted the carbothermal reduction reaction.


Assuntos
Coque , Petróleo , Carvão Mineral , Ligas , Carbono
2.
J Cancer ; 15(1): 79-89, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164275

RESUMO

Hsp70 (heat shock protein 70) plays critical roles in cancer cell proliferation and apoptosis. Recently, accumulating evidences have demonstrated the cancer promoting effects of Hsp70 in bladder cancer. The development of novel therapeutic approaches targeting Hsp70 thus received great attention from researchers. In this study, we demonstrated that silibinin, a natural polyphenolic flavonoid isolated from the milk thistle, targeted Hsp70 by inhibiting its transcription in bladder cancer cells. We also demonstrated that knockdown of endogenous Hsp70 enhanced silibinin-induced apoptosis, while overexpression of exogenous Hsp70 could partially reverse the effects of silibinin-induced cell apoptosis. Furthermore, we found that silibinin could activate HSF1/Hsp70-regulated mitochondrial apoptotic pathway. Mechanically, silibinin inhibited the interaction between Apaf-1 and Hsp70, thus increasing the recruitment of pro caspase-9. Results from in vivo study demonstrated that silibinin suppressed the growth of bladder cancer xenografts, which was accompanied with the activation of caspase-3 and downregulation of HSF1 and Hsp70. Taken together, our data indicates that silibinin induces mitochondrial apoptosis via inhibiting HSF1/Hsp70 pathway and also suggests the therapeutic potential of silibinin in the treatment of bladder cancer.

3.
Waste Manag ; 169: 82-90, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37418787

RESUMO

The diamond wire saw silicon powder (DWSSP) is considered to be a harmful to the environment because of finer particles, the large specific surface area and flammability. Removal of Fe impurity is very essential for recovering Si from DWSSP due to the large amount of Fe introduced during the silicon powder generation process. In the study, the thermodynamics of Fe leaching with HCl was analyzed and determined iron was theoretically present as ions in solution. Furthermore, the effects of different concentrations, temperatures and liquid-solid ratios on Fe leaching from HCl were investigated. The leaching rate of Fe reached 98.37% at the optimal parameters (HCl concentration of 12 wt%, leaching temperature of 333 K, liquid-solid ratio of 15 ml/g) with 100 min. The leaching kinetics of Fe in HCl was analyzed by shrinking core model and homogeneous model, respectively. The study indicated the process of leaching Fe from DWSSP conforms to the secondary reaction model of homogeneous model which coincided with the porous structure of DWSSP due to agglomeration. The apparent activation energy required (49.398 kJ/mol) in the first stage is lower than that (57.817 kJ/mol) in the second stage because of the porous structure. In conclusion, this paper provided a suitable way to purify the diamond wire saw silicon powder. This work provides an important guide for the industrial recovery and preparation of high purity silicon from DWSSP by the most environment-friendly and low-cost approach.


Assuntos
Ferro , Silício , Pós , Cinética , Diamante
4.
Environ Sci Pollut Res Int ; 30(22): 62355-62366, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36940036

RESUMO

A tremendous amount of silicon cutting waste (SCW) is being produced during slicing Si ingots, which leads to a great waste of resources and serious environmental pollution. In this study, a novel method that recycling SCW to produce Si-Fe alloys was proposed, which not only provides a process with low energy consumption, low cost, and short flow for producing high-quality Si-Fe alloys but also achieves a more effective recycling of SCW. The optimal experimental condition is investigated to be a smelting temperature of 1800 °C and a holding time of 10 min. Under this condition, the yield of Si-Fe alloys and the Si recovery ratio of SCW were 88.63% and 87.81%, respectively. Compared with the present industrial recycling method that uses SCW to prepare metallurgy-grade Si ingot by an induction smelting process, this Si-Fe alloying method can achieve a higher Si recovery ratio of SCW at a shorter smelting time. The promoting mechanism of Si recovery by Si-Fe alloying is mainly expressed as follows: (1) facilitating the separation of Si from SiO2-based slag; (2) reducing the oxidization and carbonization loss of Si by accelerating the heating of raw materials and reducing the exposed area of Si.


Assuntos
Ligas , Silício , Dióxido de Silício , Poluição Ambiental , Temperatura , Reciclagem/métodos
5.
J Environ Manage ; 337: 117681, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36931070

RESUMO

Maximizing the use of valuable components in coal gasification slag is of great significance for resource recovery and the environment due to the huge annual emission of coal gasification slag. This study successfully produced Si-Fe-Al-Ca alloy with a composition of 63.83 wt% Si, 19.73 wt% Fe, 7.09 wt% Al, 6.32 wt% Ca, 1.70 wt% Ti, 0.03 wt% P, 0.66 wt% Mn, 0.05 wt% Cr, 0.53 wt% C, and 0.06 wt% others through electric arc furnace smelting from mixed coal gasification fine slag. The alloy composition is close to the standard 65% ferrosilicon, which can be used in the deoxidation of the molten steel industry. Moreover, the alloy yield was increased from 20.53% to 67.78% by using the residual carbon of the coal gasification slag as the reductant directly instead of adding petroleum coke. The transformation of coal gasification fine slag during the smelting process and the formation mechanism of the alloy were studied and the carbothermal reduction mechanism of Al2O3 and CaO can be explained by the reduction and decomposition theory of carbides. The complex liquid phase of the reactant system and product system in the smelting process made the carbothermal reaction of Al2O3 and CaO easier to occur, but it also brought the problem that the reactions were not fully completed.


Assuntos
Carvão Mineral , Coque , Ligas , Carbono
6.
Proteomics ; 22(18): e2200020, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35779011

RESUMO

Somatic cell nuclear transfer (SCNT) shows great application value in the generation of transgenic animals, protection of endangered species, and therapeutic cloning. However, the cloning efficiency is still very low, which greatly restricts its application. Compared to fertilized embryos, cloned embryos lack the sperm proteins, which are considered to play an important role in embryonic development. Here, we compared the sperm proteome, with that of donor fibroblasts and oocytes, and identified 342 proteins unique to sperm, with 42 being highly expressed. The 384 proteins were mainly enriched in the categories of post-translational modification and cytoskeletal arrangement. Extracts of soluble sperm or fibroblast proteins were injected into cloned embryos, and the result showed that injection of sperm protein significantly inhibited abnormal embryonic cleavage, significantly decreased the level of trimethylated histone H3 Lys9 (H3K9me3) and the apoptotic index, and increased the inner cell mass (ICM)-to-trophectoderm (TE) ratio. More importantly, the sperm proteins also significantly enhanced the birthrate. The results of in vitro and in vivo experiments demonstrate that sperm-derived proteins improve embryo cloning efficiency. Our findings not only provide new insights into ways to overcome low cloning efficiency, but also add to the understanding of sperm protein function.


Assuntos
Clonagem de Organismos , Sêmen , Animais , Blastocisto , Clonagem Molecular , Clonagem de Organismos/métodos , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Epigênese Genética , Feminino , Masculino , Gravidez , Coelhos , Espermatozoides
7.
Sci Total Environ ; 816: 151580, 2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-34774957

RESUMO

Silicon cutting waste (SCW) generated during Si wafers producing process can be recycled by AlSi alloying process. However, the presence of O in SCW has a detrimental impact on recycling process. In this study, cryolite was introduced to eliminate the hindrance of O. The influences of smelting temperature and the amount of cryolite additive on the yield of the blocky AlSi alloys and the Si recovery ratio of the SCW have been investigated and the alloying conditions were optimized to a smelting temperature of 1000 °C and a cryolite/SCW mass ratio of 0.8, achieving a AlSi alloys yield of 95.99% and a Si recovery ratio of 84.77%, which were far greater than those without cryolite additive. The results showed that the addition of cryolite additive can effectively improve the smelting effect and reduce the alloying temperature. Furthermore, the action mechanism of cryolite in Al-SCW system was analyzed, and the results revealed that the molten cryolite can dissolve the generated Al2O3 existing on the surface of AlSi alloy droplets and finally contributes to the aggregation of these droplets. This method has advantages including high Si recovery ratio of SCW, low alloying temperature and simple technological process.


Assuntos
Ligas , Silício , Reciclagem , Fluoreto de Sódio
8.
J Environ Manage ; 290: 112548, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33878628

RESUMO

Large amounts of silicon cutting waste (SCW) are generated during Si wafers producing process. In this paper, SCW was mixed with Al powder to prepare Al-Si alloys by a one-step smelting process in corundum crucibles. The influences of smelting temperature (1000 °C, 1200 °C and 1500 °C) on the products of each zone (surface layer zone, loose granular zone and blocky products zone) were investigated. Al-Si alloys in the form of granular and blocky were prepared and the blocky Al-Si alloys mainly concentrated in the blocky products zone. The increase of smelting temperature can promote the aggregation of Al-Si alloy particles. The yields of Al-Si alloy blocks obtained at 1000 °C, 1200 °C and 1500 °C were 0%, 58% and 69%, respectively. The Si contents of Al-Si alloy blocks at 1200 °C and 1500 °C were 15.8 wt% and 17.1 wt% respectively. After compacting the raw materials, the yields of the blocky Al-Si alloys obtained at 1000 °C, 1200 °C and 1500 °C were increased to 65%, 72% and 79% and the corresponding Si contents of the blocky Al-Si alloys were increased to 16.0 wt%, 16.5 wt% and 17.3 wt% respectively. The reaction mechanism of the alloying process was also investigated.


Assuntos
Ligas , Silício , Óxido de Alumínio , Diamante , Temperatura
9.
Environ Pollut ; 265(Pt A): 114892, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32526632

RESUMO

More than 40% of the crystalline silicon has been wasted as silicon cutting waste (SCW) during the wafer production process. This waste not only leads to resource wastage but also causes environmental burden. In this paper, SCW produced by the diamond-wire sawing process was recycled by Al-Si alloying process. Cryolite was introduced to the reaction system to dissolve the SiO2 layer existed on the surface of the Si particles in SCW. Alloys with 12.02 wt% of Si were prepared and the mechanism of the alloying process was investigated in detail. The Si-Al-cryolite system and SiO2-Al-cryolite system were studied individually to analyze the reaction process and transferring behavior of Si and SiO2 in SCW. The SiO2 shell was firstly transformed into Si-O-F ions. Then the Si-O-F ions diffused to the reaction interface by the effect of the concentration gradient and were reduced to Si by the aluminothermic reduction reaction: 4Al (l) + 3SiO2 (dissolved in the melt) = 3Si (Al)+ 2Al2O3 (dissolved in the melt). Then the internal Si particles were released into cryolite after the dissolution of SiO2 and transferred to the reaction interface by the effect of gravity. The influences of the mass ratio of Al/SCW and agitation modes on the Si content of the alloys and the Si recovery ratio in SCW were investigated. With the increase of the mass ratio of Al/SCW from 2.2 to 6.5, the Si recovery ratio in SCW increased from 44.08% to 69.05%, but the silicon content of the alloys decreased from 16.06 wt% to 8.83 wt%. Agitation can effectively improve the smelting effect during smelting by which the silicon content of the alloys and the Si recovery ratio in SCW increased from 12.02 wt% and 64.25% to 13.17 wt% and 69.46%, respectively.


Assuntos
Ligas , Silício , Reciclagem , Dióxido de Silício , Fluoreto de Sódio
10.
J Hazard Mater ; 400: 123145, 2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-32574878

RESUMO

In this paper, the reactive sintering Si3N4-Si2N2O composites ceramics were fabricated from the diamond-wire saw powder through the reaction-sintering nitridation method. The effects of sintering temperatures, holding time and oxygen contents on the Si3N4-Si2N2O composites formation were investigated in detail. The results revealed that the phases of final products consisted of α/ß-Si3N4 and Si2N2O, and the proportion of three phases could be influenced by sintering temperatures and oxygen contents. In addition, rod-like particles and clastic granules were observed in final specimens, and rod-like particles mainly formed in low sintering temperatures and low oxygen contents, which could be attributed to the vapor-vapor-solid (VVS) growth mechanism. Furthermore, a lot of rod-like particles were distributed in cracks among the Si3N4-Si2N2O composites matrixes, which formed the bridge structures and enhanced the mechanical properties. The specimen obtained at 1500 ℃ with 5 wt.% SiO2 in raw materials had the highest compression strength of 150.6 MPa and the highest flexural strength of 46.1 MPa. Comparing with other typical composites, the Si3N4-Si2N2O composites in this work showed the desirable mechanical properties. Thus, this study provided an environment-friendly approach to recycle photovoltaic waste and reduce the cost of the reactive sintering Si3N4-Si2N2O composites ceramics.

11.
Entropy (Basel) ; 20(11)2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33266536

RESUMO

The effect of annealing temperature on the microstructure, phase constituents and mechanical properties of Al0.5CoCrFeMoxNi high-entropy complex alloys has been investigated at a fixed annealing time (10 h). The 600 °C-annealing has no obvious effect on their microstructures, while the annealing at 800-1200 °C enhances the precipitation of (Al,Ni)-rich ordered BCC phase or/and (Cr,Mo)-rich σ phase, and thereby greatly affects the microstructure and mechanical properties of the alloys. All the annealed Al0.5CoCrFeNi alloys are composed of FCC and (Al,Ni)-rich ordered BCC phases; the phase constituent of the Al0.5CoCrFeMo0.1Ni alloy changes from FCC + BCC (600 °C) to FCC + BCC + σ (800 °C) and then to FCC + BCC (1100 °C); the phase constituents of the Al0.5CoCrFeMo0.2Ni and Al0.5CoCrFeMo0.3Ni alloys change from FCC + BCC + σ to FCC + BCC with the annealing temperature rising from 600 to 1200 °C; while all the annealed Al0.5CoCrFeMo0.4Ni and Al0.5CoCrFeMo0.5Ni alloys consist of FCC, BCC and σ phases. The phase constituents of most of the alloys investigated are in good agreement with the calculated results from Thermo-Calc program. The alloys annealed at 800 °C under current investigation conditionshave relative fine precipitations and microstructure, and thereby higher hardness and yield stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...